Asymmetric Imine-Ene Reactions with Chiral Glyoxylate-Derived α -Imino Esters: An Efficient Route to Asymmetric Synthesis of α -Amino Acids

Koichi Mikami,* Masami Kaneko, and Tomoko Yajima

Department of Chemical Technology, Tokyo Institute of Technology,

Meguro-ku, Tokyo 152, Japan

Abstract: The asymmetric ene reactions with α -imino esters, prepared from (-)-8-phenylmenthyl glyoxylate, are shown to provide an efficient entry to the asymmetric synthesis of α -amino acids.

The asymmetric synthesis of (non)proteinogenic α -amino acids has become an area of great interest because of the advent of peptide-derived chemotherapeutics. The asymmetric ene reaction with α -imino ester as a glycine equivalent should constitute a direct and versatile entry to the asymmetric synthesis of α -amino acids, if the C-C bond formation takes place regioselectively at the imino carbon. We now wish to report the first example of the asymmetric "imine-ene" reactions with chiral α -imino esters (Scheme 1, Table 1).

First, the reactions of isobutene with α -imino esters, prepared in the presence of molecular sieves (MS 4A) from achiral glyoxylates and R-arylethylamine, were found to give indeed the imine-ene products with formation of C-C bonds, using an appropriate Lewis acid such as SnCl₄ or TiCl₄. All the ene reactions preferentially afforded D(R)- α -amino esters (entries $1 \sim 4$),⁴ except with EtAlCl₂ to provide N-ethyl product. Of interest is R-naphthylethylimine to provide higher D(R)-selectivity but lower chemical yield (entry 5).

Next, the reactions with imines derived from S- α -amino esters afforded higher (but still insufficient) level of diastereofacial selectivity along with better chemical yield (entries 6 ~ 8). The L(S)-stereochemistry of the major diastereomer was determined after hydrogenation through comparison with an authentic L(S)-leucine derivative obtained with 2S-trifyloxyisovalerate. Thus, the sense of asymmetric induction is exactly the same as reported for the reaction of allylic metals where the S-amino esters produce the L(S)-chiralities.

Finally, (-)-8-phenylmenthol⁷-derived esters were found to exhibit remarkably high diastereofacial selectivity along with high chemical yield (entries $11 \sim 12$). The L(S)-stereochemistry of the major diastereomer was determined through comparison with an authentic D(R)-diastereomer obtained from (-)-8-phenylmenthyl (S)-trifyloxyester.^{5,7d} Induction of L(S)-chirality indicates that the syn-chelation (A) is also favorable with α -imino esters. Thus, olefins presumably attack the imine carbon from the si-face, since the phenyl group blocks the attack from the re-face (A).⁷

Table 1. Asymmetric Imine-Ene Reaction with Glyoxylate-derived α-Imino Esters.a

Entry	R1	R ²	MLn	Temp (°C)	% Yield	L (S)	:	D (R)
1	Me	(R)-CH(Ph)CH3	MeAlCl ₂	20	22	45	:	55
2			MeAl(OTf) ₂	20	33	35	:	65
3			SnCl ₄	20	61	30	:	70
4			TiCl4	-78	21	20	:	80
5		(R)-CH(Np)CH ₃			13	15	:	85
6		(S)-CH(Pr ⁱ)CO ₂ Me		-30	76	80	:	20
7				-78	40	85	:	15
8		(S)-CH(Ph)CO ₂ Me		-30	82	72	<u>:</u>	28
9 <i>b</i>	ST Ph	Bn	TiCl4	20	21	88	:	12
10 <i>b</i>	•		SnCl4	20	32	90	:	10
11¢				20	76	97	:	3
12 ^d		Ts		0	60	>98	:	<2

^a Unless otherwise marked, the ene reaction was carried out using the isolated imine and an excess (ca. 2 eq) of isobutene. ^b Via the in situ preparation of imine. ^c Via the in situ preparation of imine in the presence of SnCl₄ (1 eq). ^d Methylenecyclohexane was used instead of isobutene. For the preparation of imine see: Synlett 1991, 561.

References and Notes

- G. C. Barrett, Ed., "Chemistry and Biochemistry of the Amino Acids", Chapman and Hall: London, 1985. J. P. Greenstein, M. Winitz, "Chemistry of the Amino Acids", Robert E. Krieger: FL, 1984, Vol 1-3. A. F. Spatola, In "Peptides: Structure and Function", V. J. Hruby, D. H. Rich, Eds., Pierce Chemical Co.: Rockford, III, 1983, p 341. A. F. Spatola, In "Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins", B. Weinstein, Ed., Marcel Dekker: New York, 1983, Vol 7, p 267. I. Wagner, H. Musso, Angew. Chem. Int. Ed. Engl. 1983, 22, 816.
- (2) K. Ogura, T. Inaba, J. Synth. Org. Chem. Jpn. 1991, 49, 51. H.-J. Altenbach, In "Organic Synthesis Highlights", VCH: Weinheim, 1991. R. M. Williams, "Synthesis of Optically Active α-Amino Acids", Pergamon: Oxford, 1989. M. J. O'Donnell, Ed., Tetrahedron: Symposia in Print, No. 17 1988, 44.
- (3) (a) Indeed, in some intramolecular cases, the imine-ene reactions take an alternative course with formation of C-N bonds: K. Koch, J.-M. Lin, F. W. Fowler, Tetrahedron Lett. 1983, 24, 1581; J. Org. Chem. 1986, 51, 167.
 (b) Intermolecular versions have been so far restricted to achiral cases: D. M. Tschaen, E. Turos, S. M. Weinreb, J. Org. Chem. 1984, 49, 5058; Tetrahedron Lett. 1982, 23, 3015.
 O. Achmatowicz, Jr. M. Pietraszkiewicz, J. Chem. Soc. Perkin I 1981, 2680. H. Braxmeier, G. Kresze, Synthesis 1985, 683. Y. Hayashi, T. Shibata, K. Narasaka, Chem. Lett. 1990, 1693.
- (4) Y. Yamamoto, S. Nishii, K. Maruyama, T. Komatsu, W. Ito, J. Am. Chem. Soc. 1986, 108, 7778.
- (5) α-Trifyloxyesters have been used in the reaction with amines to give the chiral α-amino acids without racemization: F. Effenberger, U. Burkard, J. Willfahrt, Angew. Chem. Int. Ed. Engl. 1983, 22, 65.
- (6) H. Tanaka, K. Inoue, U. Pokorski, M. Taniguchi, S. Torii, Tetrahedron Lett. 1990, 31, 3023. A. Bocoum, C. Boga, D. Savoia, A. Umani-Ronchi, Tetrahedron Lett. 1990, 31, 3023.
- (7) (a) J. K. Whitesell, Chem. Rev. 1992, 92, 953. (b) E. J. Corey, H. E. Ensley, J. Am. Chem. Soc. 1975, 97, 6908. (c) W. Oppolzer, H. J. Loher, Helv. Chim. Acta 1981, 64, 2808. (d) J. K. Whitesell, A. Bhattacharya, K. Henke, J. Chem. Soc. Chem. Commun. 1982, 988; 989. (e) Y. Yamamoto, W. Ito, Tetrahedron 1988, 44, 5415. (f) K. Mikami, H. Wakabayashi, T. Nakai, J. Org. Chem. 1991, 56, 4337.